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ABSTRACT

NASA's Numerical Aerodynamic Simulation (NAS)

program has reached a milestone with the comple-

tion of the initial operating configuration of the

NAS Processing System Network. This achievement

is the first major milestone in the continuing

effort to provide a state-of-the-art supercomputer

facility for the national aerospace community and

to serve as a pathfinder for the development and

use of future supercomputer systems. The underly-

ing factors that motivated the initiation of the

program are first identified and then discussed.

These include the emergence and evolution of com-

putational aerodynamics as a powerful new capabil-

ity in aerodynamics research and development, the

computer power required for advances in the disci-

pline, the complementary nature of computation and

wind tunnel testing, and the need for the govern-

ment to play a pathfinding role in the development

and use of large-scale scientific computing sys-

tems. Finally, the history of the NAS program is

traced from its inception in 1975 to the present

time.

INTRODUCTION

The Numerical Aerodynamic Simulation (NAS)

program is an outgrowth of the discipline of com-

putational fluid dynamics. However, the NAS sys-

tem is now recognized to be an important facility

for advancing all of the computationally intensive

aerospace disciplines and for serving in a path-

finder role for the development and use of future

supercomputer systems. In fact, the NAS Program

began to influence both discipline-oriented users

and developers of supereomputers even before the

system was first assembled. The NAS has drawn

national attention to the importance of scientific

computers to the country's technology base and has

served as a focal point for the large-scale scien-

tific computing community.

The NAS program will provide a leading edge

computational capability to the national aerospace

community. It will stimulate improvements to the

entire computational process ranging from problem

formulation to publication of results. The pro-

gram has been structured to focus on the develop-

ment of a complete computer system that can be

upgraded periodically with minimum impact on the

user and on the ever increasing inventory of

applications software. The NAS system, in its

initial operating configuration, is already serv-

ing over 200 users nationwide at over 20 remote

locations. These numbers will continue to

increase as the system matures to its extended

operating configuration including two powerful

supercomputers, all of the necessary supporting

equipment, and well established communications

links.

The objectives of this paper are twofold:

I) to identify the factors that led to the initia-

tion of the NAS Program, and 2) to review the

evolution of the NAS Program from its inception in

1975 to the present time. Included in the discus-

sion are brief reviews of the evolution of compu-

tational aerodynamics, computer requirements for

future advances, the complementary roles of compu-

tation and experiment, and the historical role of

the government in the development and use of

large-scale scientific computing systems.

FACTORS MOTIVATING THE NAS PROGRAM

The underlying motivations for the NAS pro-

gram are a composite of four principal factors:

I) the emergence and evolution of computational

aerodynamics as a powerful new capability in aero-

dynamics research and development; 2) the demands

that this relatively new discipline places on

computer systems; 3) the use of computation as a

complement to wind-tunnel testing; and 4) the long

standing, recognized need for the government to

play a pathfinding role in the development and use

of large-scale scientific computing systems. Each

of these factors will be briefly discussed prior

to describing the evolution of the program.

Emergence and Evolution of Computational

Aerodynamics

Electronic computers were used to assist with

aerodynamic analyses ever since they became avail-

able to the aeronautical researchers in the

1950s. Prior to 1970, aerodynamic analyses were

limited primarily to the solution of the linear-

ized inviscid flow equations and to the equations

governing the behavior of the viscous boundary

layer adjacent to an aerodynamic surface. Com-

puters of the IBM-360 and CDC-66OO class permitted

these equations to be solved for the flows about

idealized complete aircraft configurations, but

only for situations where the flows were every-

where either subsonic or moderately supersonic and

everywhere attached to the surfaces over which

they passed. Some attempts were made to include

the nonlinear terms in the inviscid flow equations

and solve for transonic flows about airfoils, but



thesewerelimitedto theveryrestrictive situa-
tionsof either nonliftingairfoils or airfoils
withdetachedbowshockwaves.

Theyear1970markedthebeginningof a
seriesof advancesin computationalaerodynamics
that wouldnothavebeenpossiblewithoutcom-
puters. Thefirst majoradvancein solvingfor
thenonlineartransonicflowsaboutpractical
lifting airfoil_ withembeddedshockwaveswas
reportedin the literaturebyMagnusandYoshihary
(1970). Subsequentmilestonesin thedevelopment
of thetechnologyfor treatingthenonlinear
inviscidequations,andenabledonlybythecom-
puter,areshownin figureI. Byabout1973,
solutionsfor wing-bodycombinationstreatedwith
thesteady-flow,small-disturbanceequationswere
beingpublished.Resultsof thefirst treatment
of unsteadyflowsaboutairfoils appearedin the
literature byBallhaus,Jr., et al. (1975),and
thefirst flutter analysisfor a sweptwingwas
publishedabout6 yr agobyBorlandandRizzetta
(1981). Researchontheaeroelasticbehaviorof
wingsis still limitedbytheperformanceof cur-
rentlyavailablecomputersto thetreatmentof the
equationsgoverninginviscidflows. Theseequa-
tions, withcorrectionsfor boundary-layer
effects,arestill usedextensivelyfor a wide
rangeof aerodynamicproblems.However,the
really importantproblemsfacingthedesigners
todayrequiretheuseof theReynolds-averaged,
Navier-Stokesequations,bothwithandwithoutthe
inclusionof theadditionalequationsgoverning
real-gaschemistry.

Milestonesin theuseof theReynolds-
averaged,Navier-Stokesequationsfor treating
compressibleviscousflowsareshownin fig-
ure2. Theseequationsaccountfor mostof the
physicsof interest in fluid-dynamicflows. The
processof time-averagingtheNavier-Stokesequa-
tionsovera timeintervalthat is longrelative
to turbulenteddyfluctuations,yet smallrelative
to macroscopicflowchanges,introducesnewterms
representingthetime-averagedtransportof momen-
tumandenergy,whichmustbemodeledusingempir-
ical information.Verypowerfulcomputersare
requiredfor simulationswith this level of
approximation,but thepotentialadvantagesover
the inviscidequationsareenormous.Realistic
simulationsof separatedflowsandof unsteady
viscousflows,suchasbuffeting,will become
commonplaceas theability to modeltheturbulence
termsmatures.Combinedwithcomputer-
optimizationmethods,thesesimulationsshould
makeit possibleto developdesignsoptimizedfor
variousmissionswhileadheringto practicalcon-
straintssuchasavailableenginepowerandsuffi-
cient fuel volumeto meetrangerequirements.
Landmarkadvancesincludetheinvestigationof a
shock-waveinteractionwitha laminarboundary
layerreportedbyMacCormack(1971),thetreatment
of high-Reynolds-numbertransonicairfoil flowsby
Deiwert(1974),thefirst turbulentflowovera
lifting wingbyMansour(1984),andthefirst
turbulentflowovera realistic fighter

configurationat angleof attackbyFloreset al.
(1987).Relativelylargeamountsof computertime
arestill requiredfor theapplicationof these
equationsto practicalproblems,butadvancesin
technologycontinueto improvecomputational
efficiency.

Figure3 displaysa perspectiveon theeffect
that increasingcomputerpowerhashadoncomputa-
tional aerodynamicsin a practicalengineerlng
sense.Presentlyavailablemachinesareadequate
for calculatingtheflowsaboutrelatively complex
configurationswith the inviscid-flowequations.
However,thetypeof informationderivedfromthe
computationsis limited(e.g., nototal dragand
noeffectsof flowseparation).Theviscous-flow
equations,beingmorecomplexandrequiringfiner
computationalmeshes,demandsubstantiallygreater
computationalpowerto solve. Thus,thetypesof
problemsthat canbesolvedwitha givencomputer
arenecessarilylesscomplex.In effect, a
designerhasto makethechoicebetweentreating
simpleconfigurationswithcomplexphysicsor
treatingcomplexconfigurationswithsimple
physics.Yet, in bothinviscid-andviscous-flow
situations,eachnewgenerationof computershas
resultedin advancesin thevalueof computational
aerodynamicsasa designtool. Thediscipline
will beginto maturewhenbothcomplexconfigura-
tionsandcomplexphysicscanbetreatedsimulta-
neouslywitha reasonableamountof computertime.

ComputerRequirements

Computerrequirementsfor computationalaero-
dynamicscanberelatedto thefourmajorlevels
of approximationto theNavier-Stokesequations
that wereidentified in theworkbyChapman
(1979). Eachlevel of approximationresolvesthe
underlyingphysicsto a differentdegree,provides
a different level of understanding,andrequiresa
different level of computercapability. TableI
andtheworksof Chapman(1979)andPeterson
(1984)discussin somedepththeseapproximations,
their capabilitiesto solveproblemsassociated
withaircraft aerodynamics,andthecomputer
requirementsto solvethemin a reasonableamount
of time(about15min)for flowsaboutrelatively
completeaircraft configurations.Computer
requirementsareexpressedin termsof thepower
of a ClassVI machine,whichis definedhereto
havea processingspeedof 30million floating-
pointoperationspersecond(MFLOPS)anda memory
of about8 million words.Machinesof this class
arewidelyavailableat thepresenttime. Com-
puterrequirementsincreasewitheachhigherlevel
of approximation,bothbecausemoreflowvariables
are involvedandbecauseeither morepanelsor
moregrid pointsarerequiredto resolvetheflows
to a levelof detail that is commensuratewith the
physicsembodiedin theapproximation.Experience
indicatesthat theReynolds-averagedformof the
Navier-Stokesequationsprobablywill beadequate
for mostdesign-orientedproblems.Theeffectsof
all scalesof turbulencearemodeledin this level



of approximation;thedevelopmentof appropriate
turbulencemodelsis thesubjectof current
researchbybothcomputationalandexperimental
fluid dynamicists.In fact, theexperimentalists
arebeingguided,to a largeextent,bycomputa-
tional researchprogramswhicharebasedeither on
the large-eddysimulationapproximationor on the
useof thefull Navier-Stokesequationsfor simple
flowgeometries.

Speedandmemoryrequirementsfor computing
theaerodyamicbehaviorof shapesof varyingcom-
plexitiesarecomparedwithseveralexistingand
plannedcomputersin figure4 . Computerslarge
enoughto providesolutionsin 15minor lessto
theReynolds-averaged,Navier-Stokesequationsfor
theflowabouta completeaircraft areexpectedto
beavailablebeforetheendof this decade.This
advanceshouldmarkthetimewhencomputerswill
notbejust a supplementto theaircraft design
process,butwill beanabsolutenecessityto be
competitivein meetingeconomicandperformance
requirements.Computershavingevenmorepower
will berequiredin thefuture,however,to treat
routineproblemsinvolvingreal-gaschemistry,the
couplingof thedisciplinesof aerodynamics,
structures,propulsionandcontrols,andtheopti-
mizationof a completeaircraft design.

ComplementaryNatureof Computationand
Experiment

In theearly 1970s,computationswererecog-
nizedbya fewvisionariesto havethepotential
for becominganeffectivecomplementto fluid- and
aero-dynamicexperimentsfor a numberof rea-
sons. First, thephysicsof fluid flowscouldbe
representedbymathematicalequations,andcom-
puters,beginningwith the IBM360andtheCDC
6600machines,werebecomingsufficiently powerful
to solvemeaningfulapproximatingsetsof these
equationsin a practicalamountof timeandat
reasonablecost.

Second,windtunnelcostsandcomputational
costswererecognizedto bechangingin impor-
tantly different ways. Increasedcomplexityand
broadenedperformanceenvelopesof aircraft caused
thenumberof windtunnelhoursexpendedin the
developmentof newaircraft to increaseexponen-
tially with time. In Fact,this increaseamounts
to asmuchasa factor of about1,O00overan
80yr period(50hr for theWrightFlyercompared
to 50,000hr for theSpaceShuttle). Concur-
rently, thecostperhourof testingalso
increasedbya factorof about1,O00overthesame
period. Thus,windtunneltestingcostsescalated
bynearlya million fold in 80yr, whilethe cost
of numericallysimulatinga givenflow is shownby
thedatain figure 5 to havedecreasedbya factor
of 100,OOOin just 15yr duringtheperiodfrom
1969to 1982.Thisdecreasewasdueto improve-
mentsin bothcomputersandalgorithms.

Third,ontheonehand,all windtunnelsare
knownto haveall or someof the fundamentallimi-
tationssuchasmodelsize (Reynoldsnumber),
temperature,wall interference,modelsupport
interference,unrealisticaeroelasticmodeldis-
tortionsunderload,streamnonuniformity,unreal-
istic turbulencelevels,andtest gas(of concern
for thedesignof vehiclesfor flight in theatmo-
spheresof otherplanets). Ontheotherhand,if
it is acceptedthat thephysicsof fluid flowscan
bedescribedpreciselybymathematicalequations,
thentheonlyfundamentallimitationsof thecom-
putationalapproachare thelimits of computer
speedandmemory,andspeedandmemoryappearto
beexpandablewith timebymanymoreordersof
magnitude.

Finally, windtunnelsandcomputerseach
bringdifferent strengthsto theresearchand
developmentprocess.Thewindtunnelis superior
in providingdetailedperformancedataoncea
final configurationis selected,especiallyfor
casesinvolvingcomplexgeometryandcomplexaero-
dynamicphenomena.Computersareespeciallyuse-
ful for otherapplicationsincluding: I) making
detailedfluid physicsstudies,suchassimula-
tionsdesignedto shedlight onthebasicstruc-
tureof turbulentflows;2) developingnewdesign
concepts,suchassweptforwardwingsor jet flaps
for lift augmentation;3) sortingthroughmany
candidateconfigurationsandeliminatingall but
themostpromisingbeforewindtunneltesting;
4) assistingtheaerodynamicistin instrumenting
test modelsto improveresolutionof thephysical
phenomenaof interest; and5) correctingwind
tunneldatafor scalingandinterferenceerrors.
Thecombineduseof computersandwindtunnels
capturesthestrengthsof eachtool.

PathfindingRoleof theGovernment

Aconcernin themid-197Oswasthat computer
powerwasonlymarginallyadequatefor calculating
theaerodynamicsof simpleaircraft shapesat
cruiseconditions.Morepowerwasneededto pro-
videbothfor increasedresolutionof geometryand
Forincludingmorecompleteflowphysicsin the
analysesto predictperformanceduringmaneuvers
andnearperformanceboundaries.In fact, treat-
mentof thesemorecomplexproblemsin aneffec-
tive mannerrequiredadvancesnot onlyin comput-
ingengines,butalso in operatingsystems,lan-
guages,compilers,centralstoragecapabilities,
networking,remotecommunications,graphics,and
userworkstations.Thereseemedto benoassur-
ancethat theadvancesrequiredto meetgovernment
needswouldbeprovidedwithoutgovernmentstimu-
lus. In fact, this viewwasreinforcedbythe
informationsummarizedin table2 whichshowsthe
historical role of thegovernmentin stimulating
thedevelopmentof advancedcomputers.Every
majornewdigital computerfromthe IBM701to the
currentCrayandControlDataCorporation(CDC)
machineshasevolvedfromtechnologydevelopments
acceleratedbya government-sponsoredpioneering



computerdevelopmentundertakento satisfy a driv-
ing need.Theneedfor asuperiordesigncapabil-
ity for aerospacevehicleswas,andstill is, a
strongdriver for theNASProgram.

NASAfirst becameinvolvedwith thepathfind-
ing role in large-scalescientific computersin a
formalwaywhen,in 1972,it joinedwith the
AdvancedResearchandDevelopmentProjectsAgency
(nowDARPA)to test thefeasibility of the
ILLIAC-IVcomputer.TheILLIACProjectwasorigi-
nally undertakenfor thepurposesof exploringthe
feasibility of parallelprocessingandadvanced-
computer-logiccircuit technology,andresearching
newideasfor high-speedcomputermemory.When
ARPAstartedthe ILLIACProject,their driving
needwasfor ananti-ICBMcontrolsystem.NASA's
motivationfor later joining in thedevelopment
was,of course,theneedfor morecomputerpower
for thedevelopmentof computationalaerodynamics.

TheCDCwasexperimentingwith theSTAR-IOO
computerat thesametimethe ILLIAC-IVwasbeing
tested. Onlyfourof thesemachines,featuring
newideasin pipelinearchitecture,wereproduced.
Threeof thesewereobtainedbyGovernmentlabora-
toriesandonewasretainedbyCDC.Cray
Research,Inc. hadyetto producea machineand
IBMelectednot to competein the large-scale
scientific computermarket.Twoothercompanies,
BurroughsandTexasInstruments,wereontheverge
of discontinuingtheir supercomputerefforts.
Technologysurveysshowedthat computershaving
manytimesthepowerof theILLIAC-IVandthe
STAR-IOOcouldbedeveloped,but thedevelopment
wouldnothappenwithoutGovernmentsponsorship
sincethemarketfor supercomputerswasstill very
smallandlimitedprimarilyto governmentlabora-
tories. In themid-1970s,ARPA'sinterestshad
beenlargelysatisfiedwith theILLIAC-IV,andno
governmentorganizationotherthanNASAappeared
to beinterestedin first defininglong-range
requirementsfor supercomputersandthenstrongly
urgingtheir development.

Theexperiencegainedwith the ILLIAC-IV
projectandtheclearbenefitsderivedfromit
providedfurthermotivationfor proceedingwitha
majorthrust to developanadvancedcomputational
systemandtheconfidencethat successcouldbe
achieved.BenefitsfromtheILLIAC-IVProject
accruedin fourmajorareas. First, in computer
technology,theILLIAC-IVwasthefirst large
machineto havemultipleprocessorsworkingin
parallel, thefirst to employemitter-coupled
logic (ECL),andthefirst to havemultilayered
(12layers)printedcircuit boardsdesignedwith
automatedmethods.Second,in algorithmtechnol-
ogy,theexistenceof themachineforcedthe
developmentof numericalmethodsfor parallel
processing.Thisnewmethodalsoled to the
revelationthat someprinciplesof parallel
algorithmscouldbeutilized to obtainfaster
executionof problemsonconventionalcomputersof
that timeperiodthatcouldperformsomefunctions
simultaneously,suchastheCDC7600,thancould

beobtainedusingalgorithmsbasedonsequential
computingconcepts.Third,a deeperunderstanding
evolvedfromtheproblemsassociatedwith large
one-of-a-kindscientific computers.Theseprob-
lemsincludedoperating-systemsoftwarecosts,
problemsassociatedwithapplicationssoftware
transportabilityto machineshavingdifferent
architectures,anda needto provideextensionsto
thecommonFORTRANlanguageto obtainmaximum
performancegains. In fact, theNASAAmes
ResearchCenter'sinvestigatorsdevelopeda lan-
guagecalled"CFD"whichenabledfluid dynamics
codesto berunefficiently ontheparallel-
processingarchitecture. Forproblemsthat could
bestructuredin parallel, theILLIAC-IVwassub-
stantially morepowerfulthantheotherscientific
computersof its era.

Thisadvancedcomputerpowerenableda number
of pioneeringadvancesin CFD,includingthefirst
simulationof viscosity-inducedunsteadyflow
(buffett) aboutanairfoil, thefirst simulation
of control-surfacebuzz,anddetailedsimulations
of turbulentflows. TheILLIAC-IVexperience
providedthefoundationandmotivationfor contin-
uingto advancebothCFDandsupercomputersystems
technology,whichled to theconceptionof theNAS
program.

EVOLUTIONOFTHENASPROGRAM

Thepotentialvalueof thecomputational
approachto aerodynamicsresearchanddevelopment
wasclearly establishedbythemid-1970s.Also
clearwastheimportanceof pursuingeverycon-
ceivableopportunityfor improvingaerospace
vehicledesigntools to maintaina leadership
positionin the intensifyinginternationalcompe-
tition in boththecommercialandmilitary air-
craft arenas.Thus,in 1975,a smallgroupof
peopleassociatedwith thecomputationalfluid
dynamicseffort at theAmesResearchCentercon-
ceivedtheNASprogramasa vital underpinningof
thecountry'sfuture in aeronautics.

Thegrouprecognizedtheimportanceto compu-
tationalaerodynamicsof a sustainedeffort to
increasecomputerpowerasrapidlyastechnology
wouldallow. Theyalso recognizedtheneedfor
thegovernmentto assumesomeresponsibilityfor a
pathfindingrole to acceleratetheattainmentof
newmilestonesin computerperformance.

Theinitial proposalcalledfor thedevelop-
mentof a special-purposeprocessorcalledthe
Navier-StokesProcessingFacility. Thecentral
processorwasto havea minimumeffectivespeedof
one-billionfloating-pointoperationspersecond
whenoperatingon thethree-dimensional,Reynolds-
averaged,Navier-Stokesequationsandto have
performancecomparableto thebestgeneral-purpose
computerswhenused_orprocessingtheequations
of otherscientific disciplines. Its mainmemory
hadto accommodatea problemdatabaseof



31-million64-bitwords.Tokeepdevelopment
risks low,thegoalof theprojectwasto assemble
existingcomputercomponenttechnologiesinto a
specializedarchitectureratherthanto develop
newelectroniccomponents.Finally, themachine
hadto beuser-oriented,easyto program,and
capableof detectingsystematicerrorswhenthey
occurred.Theproposalwasendorsedin principle
byNASAmanagementin November,1975;then
in-housestudiesbeganto gathermomentumandthe
nameof theprojectwaschangedto theComputa-
tional AerodynamicDesignFacility (CADF).

ComputationalAerodynamicDesignFacility
Project

Thefirst formalexposureof NASA'sobjec-
tives occurredin October,1976whenproposals
wererequestedfromindustryto "performanalysis
anddefinition of candidateconfigurationsfor a
computationalfacility in orderto arrive at the
bestmatchbetweenaerodynamicsolutionmethods
andprocessorsystemdesign." Theseanalyseswere
to bedirectedtowardtheselection,preliminary
design,andevaluationof candidatesystemconfig-
urationsthat wouldbebestsuitedto thesolution
of givenaerodynamicflowmodels.Designrequire-
mentsthat wereestablishedfor this study
included: I) thecapabilityto completeselected
numericalsolutionsof theNavier-Stokesequations
for grid sizesrangingfrom5 × 105to I × 10_
pointsandwall-clocktimes(exclusiveof input-
datapreparationandoutput-dataanalysis)ranging
from5 to 15min;2) a workingmemoryof 40× 106
words;3) anarchivalstorageof at least 10× 109
words;and4) 120hr/wkof availability to the
users.

Twoparallel contractswereawardedin
February1977to developpreliminarydesignsfor
themostpromisingconfigurationsandto develop
performanceestimates,risk analyses,andprelimi-
naryimplementationcostandscheduleestimates
for eachof thedesigns.Duringtheseinitial
studies,whichlastedabout12mo,it became
apparentthat theoverallapproachto developing
the facility wassoundandthat performancegoals
couldbereachedwithnewarchitecturalconcepts
andprovenelectroniccomponents.

A3-dayworkshoponFutureComputerRequire-
mentsfor ComputationalAerodynamicswasheldat
theAmesResearchCenterin October1977for the
purposesof furtherclarifying theneedfor a
large-scalecomputersystemfor computational
aerodynamicwork,for confirmingthat thedesign
goalswereconsistentwith theneedsof thepro-
jectedusersof thefacility andfor validating
the feasibility of meetingtherequirementswith
emergingtechnology.Representativesfromall of
theappropriatetechnicalcommunitieswere
invited, includingaircraft companies,computer
companies,softwarehouses,privateresearch
institutions, universities,theDepartmentsof'
DefenseandEnergy,andotherNASACenters.An

unanticipatedlargeattendanceof over250peopl
confirmedtheexistenceof broadnationalinter_
andneedfor morepowerfulcomputersin science
andengineering.Thefeasibility of meetingpro-
cessingspeedandmemoryrequirementswasfurther
solidified, althoughit wasclearthat thegoals
couldonlybemetwitha multiple-processorarchi-
tecture. Projectednear-termadvancesin elec-
troniccomponentperformancewouldnot permitthe
goalsto bemetwitha single-processormachine.
Theworkshopalsoconfirmedthat computerindustry
economicsat that point in timewouldnot support
thedevelopmentof largespecializedprocessors
withoutthe infusionof governmentcapital. The
marketat that timewasuncertain,andit wasnot
clear that enoughmachinescouldbesold to amor-
tize thedevelopmentcosts. Finally, theaircraft
industryreaffirmedtheneedfor theproposed
facility for usein solvingspecialdesignprob-
lemsandfor servingasa pathfinderfor the
developmentanduseof large-scalescientific
computersystems.Theworkshopproceedingswere
editedbyInouye(1978).

Anassessmentof theutility of theComputa-
tional AerodynamicDesignFacility for disciplines
of interestto NASA,otherthanfluid- andaero-
dynamics,wasalsoconductedin 1977.This
assessmentwasinitiated to provideassurancethat
thefacility wouldnotbesohighlyoptimizedfor
solvingthefluid dynamicequationsthat it would
notbeusefulfor otherwork. It wouldalsopro-
videguidanceasto howthedesigncouldbe
altered,if required,to makeit usefulfor gen-
eral scienceandengineeringcalculationswithout
seriouslyimpactingits capabilitiesfor the
originally intendedproblems.Expertsinvolved
with researchonweatherandclimate,structures,
chemistry,astrophysics,andpropulsionreviewed
theproposedarchitecturesandanalyzedhowthe
varioussolutionalgorithmspeculiarto those
disciplinescouldbemappedontothedesigns.
Resultsof theassessmentconfirmedtheexpected
conclusionthat theCADFwouldprovidea powerful
newcapabilityfor a broadrangeof problemsof
importanceto NASA.

NumericalAerodynamicSimulationFacility
Project

After it wasrecognizedthat thefacility
wouldbeusedprimarilyfor computationalresearch
ratherthanfor routineaircraft design,thename
waschangedduringthecourseof thefirst study
contractsto theNumericalAerodynamicSimulation
Facility (NASF).Eventhoughit becameapparent
after theworkshopthat a computationalresource
of this magnitudewouldbea valuabletool for the
solutionof complexproblemsin othertechnical
areasof interest,aerodynamicswouldstill bethe
disciplineusedto drivetherequirements.How-
ever,beforetheconclusionof thefirst roundof
contractedefforts, theneedForfurtherstudies
withgreateremphasisona computersuitablefor a
broaderrangeof disciplineswasrecognized.



Accordingly,12-mofollow-onfeasibility study
contractswereawardedin March1978.Theresults
of theseefforts wereexpectedto providedataof
sufficientaccuracyto permitformulationof a
definitiveplanfor thedevelopmentof thefacil-
ity. Severaleventsoccurredduringtheperiodof
thesestudieswhichresultedin somcrevisionsto
thebasicperformancespecificationsanda deeper
involvementof theusercommunityin theproject
activities.

Thedisciplineof computationalaerodynamics
hadmaturedsignificantlyin the3 yr sincethe
projectwasfirst conceived.Newnumerical
methodsweredevelopedandexistingmethodswere
refined. Thisled to therealizationthat if the
sizeof theon-lineorworkingmemorywas
increasedto 240× 106words,thefacility could
beusednotonlyto estimatetheperformanceof
relativelycompleteaircraft configurations,but
alsoto serveasaneffectivetool to studythe
physicsof turbulentflows,a subjectthat had
eludedresearchersfor morethan80years. A
correspondingincreasein theoff-line file stor-
agefrom10× 109to approximately100_ 109words
wasrequiredto accommodatethelargerdatasets.

AUserSteeringGroupwasformedin July 1978
to providea channelfor thedisseminationof
informationregardingprojectstatus,a forumfor
user-orientedissuesneedingdiscussion,anda
soundingboardbywhichthe projectoffice could
obtainfeedbackfromfutureuserorganizations.
Examplesof user-orientedissuesof interest
were: I) selectionof userlanguages;2) manage-
mentpolicy; 3) equipmentrequiredfor remote
access;and4) dataprotection. TheUserSteering
Groupwascomposedof representativesof theaero-
spaceindustry,universities,andothergovernment
agencies.Thegroupis still active, althoughits
namewaseventuallychangedto theUserInterface
Groupto reflect its currentrole moreaccu-
rately. Organizationscurrentlyrepresentedon
theUserInterfaceGroupareshownin table3.

Thefeasibility studieswerecompletedin the
springof 1979.Eachstudyproduceda refined
baselineconfiguration,a functionaldesign,and
roughestimatesof costandschedule.Bothstud-
iesconcludedthat about5 yr wouldberequiredto
completethedetaileddesignandto develop,inte-
grate,andtest thefacility. Whilepreparations
werebeingmadeto continuethecontracteddevel-
opmentprocess,thenameof theprojectwas
changedonceagainto theNumericalAerodynamic
Simulator(NAS)Project.

NumericalAerodynamicSimulatorProject

Adetailedplanfor thedesign-definition
phaseof theactivity waspreparedduringthe
winterof 1979bytheNASProjectOffice,which
wasestablishedat AmesResearchCenterearlier in
theyear. Thisplanincludedrefining thespeci-
ficationsfor: I) thecomputingengine;2) the

supportprocessingsystem;and3) thecollection
of otherperipherals,includingintelligent termi-
nals, graphicaldisplaydevices,anddatacom-
municationinterfacesto bothlocal andremote
users. Two40-week,parallel, design-definition
contractswereawardedin September1980.Upon
their completionin July1981,thecontractors
wereawardedfollow-oncontractsrelatedto
furtherdesigndefinition. Thesewereconcluded
in April 1982whentheproposalsfor thedetailed
design,development,andconstructionweresub-
mittedbythecontractorsfor evaluation.

Afteranevaluationof theproposals,the
decisionwasmadein June1982to discontinuethe
procurement.Thisdecisionwasbasedonevalua-
tion findingswhichwerethat therisks involved
in achievingtheproposedtechnicalobjectives
within thecritical resourceandschedulelimita-
tionswereunacceptable.Followingthis decision,
efforts beganto charta newcourseof action. A
reassessmentwasmadeof theneedsof theuser
communityandtheevolvingstateof theart in
computertechnology.Threeprincipalconclusions
resultedfromthis reassessment.

First, theapplicationandessentialimpor-
tanceof computationalaerodynamicsto aeronauti-
cal researchanddevelopmenthadgrownsignifi-
cantlysincethemid-197Os.Thus,it wasdeemed
importantto establishandto maintaina leading-
edgecomputationalcapabilityasanessentialstep
towardmaintainingthenation'sleadershipin
aeronautics.Toachievethis goaltheNASproject
wasto berestructuredasanon-goingNASprogram
in whichsignificantadvancesin high-speedcom-
putertechnologywouldbecontinuouslyincorpo-
ratedas theybecameavailable.

Second,thesupercomputerenvironmenthad
changedsincetheinceptionof theNASactivity in
themid-197Os.Increasedinterestin supercomput-
ing, advancesin computertechnologystimulatedin
partbytheNASProgram,andtheincreasingthreat
of foreigncompetitionchangedtheenvironmentto
theextentthat it no longerappearednecessary
for thegovernmentto directly subsidizethe
developmentof thenextgenerationof scientific
computers.Thesefactorsprovidedanenvironment
permittinga moresystematic,evolutionary
approachtowarddevelopingandmaintainingan
advancedNAScomputationalcapability.

Third, the importanceof couplingadvance-
mentsin thestateof theart of supercomputers
withadvancedsystemnetworksandsoftwarearchi-
tectureswasrecognized.Thiscapabilityis
necessaryto accommodatesuccessivegenerationsof
supercomputersfromdifferent vendorsandto pro-
videthecapabilitiesneededto enhanceproductiv-
ity of theuser. Thisstepled to a strategythat
minimizesthedependenceof theentire systemon
singlevendorsandto theestablishmentof a
strongin-housetechnicalcapabilityto direct the
initial andongoingdevelopmentefforts.



Thisreassessmenthighlightedtheimportance
of thepathfindingroleof theNASprogram.It
wouldbeparticularlychallengingto developa
systemwithcomponentsrangingfromsupercomputers
to userworkstationsthat couldbemaintainedat
the leadingedgeof thestate of theart, while
simultaneouslyprovidinguninterruptedserviceto
a largecommunityof usersworkingon important
nationalproblems.

NumericalAerodynamicSimulationProgram

Aplanfor theredefinedprogramwasapproved
in February1983. It included: I) thedesign,
implementation,testing,andintegrationof an
initial operatingconfigurationof theNASPro-
cessingSystemNetwork;2) thesystematicand
evolutionaryincorporationof advancedcomputer-
systemtechnologiesto maintaina leading-edge
performancecappability;and3) themanagementand
operationof thecomplex.

Thenewplanwaspresentedto thevarious
NASAAdvisoryGroups,theOfficeof Managementand
Budget,theOfficeof ScienceTechnologyand
PolicyandappropriateCongressionalSubcommit-
tees. It receivedstrongsupport,andtheProgram
wasapprovedbyCongressasa newstart for NASA
in thePresident'sbudgetfor fiscal year1984.
TheAdministratorof NASAat that timetermedthe
NASProgram"theCenterpieceof NASA'sAeronauti-
cal Program."

FollowingProgramapproval,thedevelopment
of the initial operatingcapabilitybeganin
earnest.Thein-houseprojectteamwasexpanded,
andit wassupplementedbya forceof on-site
contractorpersonnel.Procurementsof bothhard-
wareandsoftwarewereinitiated andtheevolving
test-bednetworkwasreadyto receivethefirst
High-SpeedProcessor,theCray-2,in theFall of
1985.Afterabout9 moof test andintegration,
andwith thehelpof a selectgroupof users,the
systemwasunveiledfor nationalusein its
InterimInitial OperatingConfigurationin July
1986.Withina fewmonthsthesystemwasbeing
usedeffectivelybyover200nationalusers
locatedbothat AmesResearchCenterandat
20remotesites.

Theterm"InterimInitial OperatingConfig-
uration"wasselectedto emphasizethefact that
thesystemwouldnotreachits first stageof
maturityuntil it couldbelocatedin thenew
buildingthat wasbeingconstructedasits ulti-
matehome.Constructionof this newbuilding
startedin theSpringof 1985,andit wasready
for occupancyat theendof 1986.Thesystemwas
shutdownfor severalweeks,dismantled,reassem-
bledin thenewbuilding,andbroughtbackinto
operationprior to meetingthegoalsof theIni-
tial OperatingConfiguration.Thisconference
celebratestheachievementof thegoalsof the
Initial OperatingConfiguration,andcommemorates
thededicationof this newnationalcapability.

Plansarenowwell alongfor expandingthesystem
andinstalling thesecondhigh-speedprocessor
prior to reachingthegoalsof thefirst Extended
OperatingConfigurationin 1988.

SUMMARYANDCONCLUDINGREMARKS

Amajormilestonein aerodynamicsresearch
anddevelopmentwasreachedin 1970when,for the
first time,computersbeganto solveproblemsnot
previouslyamenableto solution. Withinseveral
years,it becameapparentthat insufficientcom-
puterpowerwouldimposeseriouslimitationson
thegrowthof computationalaerodynamicsasa
usefuldiscipline. It waspossibleto calculate
theflowsaboutthree-dimensionalshapessuchas
wingsandsimplewingbodies,butonlywithhighly
approximateformsof thegoverningequationsthat
neglectedfull treatmentof importantnonlinear
andviscousphenomena.Considerationof more
comprehensivephysicsforcedtheanalysesto be
restrictedto simpletwo-dimensionalshapes,such
asairfoils or axisymmetricaircraft components.
Evenin this primativestate, computationalaero-
dynamicswasrecognizedto havethepotentialto
becomea majorcomplementto wind-tunneltest-
ing. Workingtogether,computersandwindtunnels
wouldprovidea formidablecapabilityfor design-
ing aerospacevehicles.

Recognizingthepotentialimportanceof com-
putationalmethodsto theaerodynamicsdesign
process,a groupof peopleat theAmesResearch
Centerinitiated aneffort in 1975to drive the
developmentof a computersystempowerfulenough
to takethenextmajorstepin thedevelopmentand
useof computationalaerodynamics.Thissmall
initial effort grewwith timeand,in thefall of
1983,it becamea majornewprogramfor NASAwith
twoprincipalobjectives: I) to providea super-
computerfacility for thenationalaerospacecom-
munitythat wouldbemaintainedascloseto the
stateof theart as possible,and2) to serveasa
pathfinderfor thedevelopmentanduseof future
supercomputersystems.TheNASProgramwill reach
its first majormilestonein Marchof 1987when
its initial capabilitywasdeclaredoperational.
Already,it wasservingover200usersnationwide,
andplanswerewell underwayfor its extended
operatingcapabilityhavingtwopowerfulsupercom-
puters,all of thenecessarysupportingequipment
andwell-establishedcommunicationslinks.

Computationalaerodynamicswasin a rela-
tively immaturestagewhentheNASProgramwas
conceivedin 1975.Evenso, initial forecastsof
the importanceof thediscipline to thecountry's
aeronauticsprogramandof theamountof computer
powerrequiredto reachvariousplateaushavebeen
remarkablyaccurate.Nothinghastranspiredin
the intervening12yr that wouldtemperthedesire
to pushthedevelopementor large-scalecomputer
systemsfor thecountry'saerospaceprogramas
fast asthetechnologywill allow. In fact,



supercomputersarenowrecognizedasbeingabso-
lutely essentialfor manyfields of scienceand
engineering,andall arebenefitingfromthe
efforts of theNASProgramto developandmaintain
a leading-edgecomputationalsystem.

REFERENCES

I.

2.

3-

4.

Magnus, R.; and Yoshihara, H.: Inviscid

Transonic Flow Over Airfoils. AIAA J.,

Vol. 8, No. 12, Dec. 1970, pp. 2157-2162.

Ballhaus, W. F., Jr.; Magnus, R.; and

Yoshihara, H.: Some Examples of Unsteady

Transonic Flows Over Airfoils. Unsteady

Aerodynamics, Vol. II, University of Arizona

Press, 1975, pp. 769-791.

Borland, C. J.; and Rizzetta, D. P.: Non-

linear Transonic Flutter Analysis. AIAA

Paper 81-0608-CP, May 1981.

MacCormack, R. W.: Numerical Solutions of

the Interaction of a Shock Wave With a Lami-

nar Boundary Layer. Lecture Notes in

Physics, Vol. 8, Springer-Verlag, 1971,

pp. 151-163.

5.

6.

7.

8.

9.

10.

Deiwert, G. S.: Numerical Simulation of High

Reynolds Number Transonic Flow. AIAA Paper

74-603, June 1974.

Mansour, N. N.: Numerical Simulation of the

Tip Vortex Off a Low-Aspect-Patio Wing at

Transonic Speed. NASA TM 85932, April 1984.

Flores, J.; Reznick, S. G.; Holst, T. L.; and

Gundy, K.: Transonic Navier-Stokes Solutions

for a Fighter-Like Configuration. AIAA Paper

No. 87-0032, Jan. 1987.

Chapman, Dean R.: Computational Aerodynamics

Development and Outlook. AIAA J. Vol. 17,

No. 12, Dec. 1979, pp. 1293-1313.

Peterson, Victor L.: Impact of Computers on

Aerodynamics Research and Development. IEEE

Proc., Vol. 72, pp 68-79, Jan. 1984.

Inouye, M. (ed.): Future Computer Require-

ments for Computational Aerodynamics. NASA

CP 2032, 1978.

Table I.- Governing equations, results, and computer requirements for computational

aerodynamics.

GRID POINTS COMPUTERAPPROXIMATION CAPABILITY
REQUIRED REQUIREMENT

LINEARIZED INVISCID

NONLINEAR INVISCID

REYNOLDS AVERAGED
NAVIER-STOKES

LARGE EDDY
SIMULATION

FULL NAVIER-STOKES

SUBSONIC/SUPERSONIC
PRESSURE LOADS

VORTEX DRAG

ABOVE PLUS:

TRANSONIC PRESSURE LOADS
WAVE DRAG

ABOVEPLUS:

SEPARATION/REATTACHMENT
STALL/BUFFET/FLUTTER

TOTAL DRAG

ABOVEPLUS:

TURBULENCESTRUCTURE
AERODYNAMIC NOISE

ABOVE PLUS:

LAMINAR/TURBULENT
TRANSITION

TURBULENCE DISSIPATION

3 × 103

PANELS

105

107

109

1012 TO 1015

1/10 CLASS Vl

CLASS VI

30 X CLASS VI

3000 X CLASS Vl

3 MILLION TO
3 BILLION

CLASS VI



Table 2.- Historical role of the Government as a

prime driver in advancing computer capability.

TIME DRIVING NEED SPONSOR COMPUTER
DEVELOPED

MID 1940'S MULTITUDE OF BALLISTIC TABLES BRL ENIAC

(WW II)

EARLY MID DEW AIR DEFENSE FOR TRACKING USAF AN FSQ7
1950'S BOMBER FLEET

EARLY SUPERIOR DESIGN CAPABILITY FOR AEC COC 6600

1960'S SMALL NUCLEAR DEVICES

LATE ANTI ICBM CONTROL SYSTEM {NEED DARPA ILLIAC IV

1960S kLIM;NATED POLITICALLY PRIOR

TO COMPLETION iN 19721

CIRCA SUPERIOR DESIGN CAPABILITY FOR NASA NAS

1980 AIRCRAFT PROCESSING

SYSTEM

NE]_/ORK

KEY COMMERCIAL

TECHNOLOGY FOELOWONS

VACUUM TUBE IBM 701,

ELECTRONIC UNIVACI

COMPUTING

MAGNETIC CORE IBM 709
MEMORY

INTEGRATED COC7600

CIRCUITS iBM 370

SEMICONDUCTOR CDCSTAR
MEMORY AND CRAY 1

PARALLEL

PROCESSING

NETWORKING OF

SUPERCOMPUTERS

COMMON USER

INTERFACE

Table 3.- NAS User Interface Group.

FUNCTION

• INFORMATION CHANNEL BETWEEN USER COMMUNITY AND PROJECT

• IDENTIFY AND DISCUSS USER-ORIENTED ISSUES, e.g,, REMOTE ACCESS

PARTICIPATING ORGANIZATIONS

• AIRFRAME COMPANIES

BOEING AEROSPACE, GENERAL DYNAMICS, GRUMMAN AEROSPACE, LOCKHEED-CALIF,,

LOCKHEED-GA,, McDONNELL DOUGLAS, NORTHROP, ROCKWELL, VOUGHT

• ENGINE COMPANIES

DETROIT DIESEL ALLISON, GENERAL ELECTRIC, PRATT AND WHITNEY

• DEFENSE DEPARTMENT

AFWAL, AEDC, BRL, DTNSRDC, NUSC

• GENERAL AVIATION

GENERAL AVIATION MANUFACTURERS ASSOC. (GATES-LEAR JET)

• ROTORCRAFT

AMERFCAN HELICOPTER SOCIETY (UNITED TECHNOLOGY CORP, RES, CENTER)

• UNIVERSITIES

STANFORD, UNIVERSITY OF COLORADO, SCRIPPS INSTITUTION OF OCEANOGRAPHY,

PRINCETON, MASSACHUSSETTS INSTITUTE OF TECHNOLOGY

• NATIONAL SCIENCE FOUNDATION (NSF)

• NATIONAL CENTER FOR ATMOSPHERIC RESEARCH (NCAR)

• NASA

AMES, GODDARD, LANGLEY, LEWIS

STEADY

LIFTING AIRFOILS FULL AIRCRAFT
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SMALL _ _plicit) //_ WINGBODY
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_J?_J -
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YEAR

Figure I.- Milestones in the development of computational aerodynamics; inviscid transonic

flows.
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Figure 2.- Milestones in the development of computational aerodynamics; compressible viscous

flows.
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Figure 3.- Pictorial representation of the effect that increasing computer power has had on

computational aerodynamics.
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Figure 4.- Computer speed and memory requirements for aerodynamic calculations compared with

the capabilities of various machines; 15-m[n runs with 1985 algorithms.
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